Skip to contents

Call a user-defined function on the point cloud. The function receives a data.frame with the point cloud. Its first input must be the point cloud. If the function returns anything other than a data.frame with the same number of points, the output is stored and returned at the end. However, if the output is a data.frame with the same number of points, it updates the point cloud. This function can, therefore, be used to modify the point cloud using a user-defined function. The function is versatile but complex. A more comprehensive set of examples can be found in the online tutorial.

Usage

callback(fun, expose = "xyz", ..., drop_buffer = FALSE, no_las_update = FALSE)

Arguments

fun

function. A user-defined function that takes as first argument a data.frame with the exposed point cloud attributes (see examples).

expose

character. Expose only attributes of interest to save memory (see details).

...

parameters of function fun

drop_buffer

bool. If false, does not expose the point from the buffer.

no_las_update

bool. If the user-defined function returns a data.frame, this is supposed to update the point cloud. Can be disabled.

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

Details

In lasR, the point cloud is not exposed to R in a data.frame like in lidR. It is stored internally in a C++ structure and cannot be seen or modified directly by users using R code. The callback function is the only stage that allows direct interaction with the point cloud by copying it temporarily into a data.frame to apply a user-defined function.

expose: the 'expose' argument specifies the data that will actually be exposed to R. For example, 'xyzia' means that the x, y, and z coordinates, the intensity, and the scan angle will be exposed. The supported entries are t - gpstime, a - scan angle, i - intensity, n - number of returns, r - return number, c - classification, u - user data, p - point source ID, e - edge of flight line flag, R - red channel of RGB color, G - green channel of RGB color, B - blue channel of RGB color, N - near-infrared channel, C - scanner channel (format 6+) Also numbers from 1 to 9 for the extra attributes data numbers 1 to 9. 'E' enables all extra attribute to be loaded. '*' is the wildcard that enables everything to be exposed from the point cloud

See also

Examples

f <- system.file("extdata", "Topography.las", package = "lasR")

# There is no function in lasR to read the data in R. Let's create one
read_las <- function(f)
{
  load <- function(data) { return(data) }
  read <- reader()
  call <- callback(load, expose = "xyzi", no_las_update = TRUE)
  return (exec(read + call, on = f))
}
las <- read_las(f)
head(las)
#>          X       Y        Z Intensity
#> 1 273357.1 5274360 806.5340      1340
#> 2 273357.2 5274359 806.5635       728
#> 3 273357.2 5274358 806.0248      1369
#> 4 273357.2 5274510 809.6303       589
#> 5 273357.2 5274509 809.3880      1302
#> 6 273357.2 5274508 809.4847       123

convert_intensity_in_range <- function(data, min, max)
{
  i <- data$Intensity
  i <- ((i - min(i)) / (max(i) - min(i))) * (max - min) + min
  i[i < min] <- min
  i[i > max] <- max
  data$Intensity <- as.integer(i)
  return(data)
}

read <- reader()
call <- callback(convert_intensity_in_range, expose = "i", min = 0, max = 255)
write <- write_las()
pipeline <- read + call + write
ans <- exec(pipeline, on = f)

las <- read_las(ans)
head(las)
#>          X       Y        Z Intensity
#> 1 273357.1 5274360 806.5340       137
#> 2 273357.2 5274359 806.5635        72
#> 3 273357.2 5274358 806.0248       140
#> 4 273357.2 5274510 809.6303        57
#> 5 273357.2 5274509 809.3880       133
#> 6 273357.2 5274508 809.4847         7